Further solutions of fractional reaction-diffusion equations in terms of the H-function
نویسندگان
چکیده
This paper deals with the investigation of the solution of an unified fractional reaction-diffusion equation associated with the Caputo derivative as the time-derivative and Riesz-Feller fractional derivative as the space-derivative. The solution is derived by the application of the Laplace and Fourier transforms in closed form in terms of the H-function. The results derived are of general nature and include the results investigated earlier by many authors, notably by Mainardi et al. (2001, 2005) for the fundamental solution of the space-time fractional diffusion equation, and Saxena et al. (2006a, b) for fractional reaction-diffusion equations. The advantage of using Riesz-Feller derivative lies in the fact that the solution of the fractional reaction-diffusion equation containing this derivative includes the fundamental solution for space-time fractional diffusion, which itself is a generalization of neutral fractional diffusion, space-fractional diffusion, and time-fractional diffusion. These specialized types of diffusion can be interpreted as spatial probability density functions evolving in time and are expressible in terms of the H-functions in compact form.
منابع مشابه
Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملMultiple solutions of the nonlinear reaction-diusion model with fractional reaction
The purpose of this letter is to revisit the nonlinear reaction-diusion modelin porous catalysts when reaction term is fractional function of the concen-tration distribution of the reactant. This model, which originates also in uidand solute transport in soft tissues and microvessels, has been recently givenanalytical solution in terms of Taylors series for dierent family of reactionterms. We a...
متن کاملExact and Approximate Solutions of Fractional Diffusion Equations with Fractional Reaction Terms
In this paper, we consider fractional reaction-diffusion equations with linear and nonlinear fractional reaction terms in a semi-infinite domain. Using q-Homotopy Analysis Method, solutions to these equations are obtained in the form of general recurrence relations. Closed form solutions in the form of the Mittag-Leffler function are perfectly obtained in the case with linear fractional reactio...
متن کامل2 00 6 Fractional Reaction - Diffusion Equations
In a series of papers, Saxena, Mathai, and Haubold (2002, 2004a, 2004b) derived solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which provide the extension of the work of Haubold and Mathai (1995, 2000). The subject of the present paper is to investigate the solution of a fractional reaction-diffusion equation. The results derived are of ge...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 235 شماره
صفحات -
تاریخ انتشار 2011